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A B S T R A C T   

Bufalin is an endogenous cardiotonic steroid, first discovered in toad venom but also found in the plasma of 
healthy humans, with anti-tumour activities in different cancer types. The current review is focused on its 
mechanisms of action and highlights its very large spectrum of effects both in vitro and in vivo. All leads to the 
conclusion that bufalin mediates its effects by affecting all the hallmarks of cancer and seems restricted to cancer 
cells avoiding side effects. Bufalin decreases cancer cell proliferation by acting on the cell cycle and inducing 
different mechanisms of cell death including apoptosis, necroptosis, autophagy and senescence. Bufalin also 
moderates metastasis formation by blocking migration and invasion as well as angiogenesis and by inducing a 
phenotype switch towards differentiation and decreasing cancer cell stemness. Regarding its various mechanisms 
of action in cancer cells, bufalin blocks overactivated signalling pathways and modifies cell metabolism. 
Moreover, bufalin gained lately a huge interest in the field of drug resistance by both reversing various drug 
resistance mechanisms and affecting the immune microenvironment. Together, these data support bufalin as a 
quite promising new anti-cancer drug candidate.   

1. Introduction 

Bufalin is a cardiotonic steroid composed of a steroid backbone 
structure bound to a lactone cycle (Fig. 1) [1]. As other cardiotonic 
steroids such as digoxin and ouabain, its main target is the 
Na+/K+-ATPase pump. Even if it exerts its major and most prominent 
effects by perturbating the osmotic balance in cells, more recent studies 
have indicated that non-toxic doses of these molecules affected signal 
transduction [2]. First focused in the cardiovascular context, the study 
of cardiotonic steroids has gained interest in other research areas and 
their inhibitory activity on cancer development has been reported in the 
literature [3,4]. More specifically, bufalin is a bufadienolide which can 
be found in many plant or animal species, but their main sources are skin 
and parotid gland secretions of venomous toads. In plants and animals, 
bufadienolides are present mainly as a defence mechanism against 
predators [5]. Bufalin is also a key active ingredient of the traditional 
Chinese medicine HuaChansu [6]. It possesses potential therapeutic ef-
fects in various medical conditions such as heart failure, infection or 
inflammatory diseases [7–9] by harbouring cardiotonic, anti-in-
flammatory, and diuretic properties, but it also has anti-cancer activities 
[6,9]. Even if bufadienolides were first and mainly identified in toads, 
some research highlighted their presence in humans. The presence of 

endogenous bufadienolides in humans has been known for many years 
mainly with marinobufagenin (MBG) which is produced in humans 
mainly during preeclampsia [10]. Their biosynthesis takes place in the 
adrenal gland and cholesterol is the major substrate [5]. Bufalin-like 
immunoreactive substances have been observed in human serum for 
several years [11], but the presence of bufalin in human serum was 
validated for the first time in 2020 by HPLC-MS/MS [12]. This study 
reported bufalin concentrations of about 5.7 nM in the serum of healthy 
individuals and of five times decreased concentrations in the serum of 
patients with hepatocellular carcinoma, further highlighting its role as a 
potentially protective molecule against cancer development. 

1.1. Clinical trials on HuaChansu 

The administration of purified bufalin has never been performed in 
humans yet but there are studies in the literature reporting the results of 
clinical trials assessing the effect of HuaChansu, a traditional Chinese 
medicine, whose main active constituent is bufalin, on cancer patients. 
HuaChansu is a sterilized hot water extract of dried toad skin which can 
be injected. 

A pilot study was performed by the Fudan University Cancer Hospital 
(Shanghai, China) and the M.D. Anderson Cancer Center (Houston, 
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Texas, USA) to investigate its adverse effects and its effectiveness against 
hepatocellular carcinoma, NSCLC and pancreatic cancer. HuaChansu 
was i.v. administered for 14 days followed by 7 days off. No dose 
limiting toxicities were calculated as no significant adverse event were 
observed at doses 8 times higher than what is used in traditional Chinese 
medicine. Indeed, 73 % of patients had no toxicities greater than grade 
1. Moreover, as HuaChansu contains cardiotonic steroids, cardiac 
function was assessed by electrocardiogram, but no alteration of the 
cardiac function was observed. The toxicities were haematological 
(leukopenia and thrombocytopenia), gastrointestinal (loss of appetite, 
constipation and diarrhea), mucocutaneous (dental ulcers and rashes), 
and cardiovascular (premature ventricular contraction and hyperten-
sion). On the 15 patients enrolled, 6 (40 %) had stable disease (median 
duration = 6.0 months; range 3.5–11.1 months) and one patient with 
hepatocellular carcinoma had 20 % regression (duration = 11 months) 
[13]. These encouraging results highlighted that HuaChansu was well 
tolerated and capable of disease stabilization, and have led to another 
phase II clinical trial by the same groups to study the effects of the 
combination of gemcitabine with HuaChansu in pancreatic cancer 
(NCT00837239) [14]. This trial compared the effect of gemcitabine plus 
HuaChansu versus gemcitabine plus placebo in locally advanced or 
metastatic pancreatic adenocarcinoma. A total of 80 patients were 
enrolled and no toxicity was observed with the combination. However, 
no benefit of the combination on progression-free survival (PFS), 
objective radiographical response rate (ORR) nor time to progression 
was observed [15]. Three hypotheses are proposed to explain the lack of 
effectiveness of such combination: 1) a too low dose of HuaChansu, as no 
toxic effects were observed; 2) a too short exposure to see a positive 
effect, this short exposure time is in line with the characteristics of 
advanced pancreatic cancer which evolves very quickly; 3) the resis-
tance of pancreatic cancer to many treatments, as many clinical trials 
have tested the combination of gemcitabine with other molecules 
without significative benefit [6,13]. 

Nevertheless, HuaChansu is approved by the Chinese FDA for use at 
oncology clinics in China and various clinical studies have recently 
demonstrated its significant anti-cancer properties in patients [6].  

– In hepatocellular carcinoma, a clinical study (379 patients) 
compared the effect of HuaChansu versus transarterial chemo-
embolization (TACE) in preventing recurrence in post-resection pa-
tients with small tumours. Compared to TACE, HuaChansu 
prolonged recurrence-free survival and decreased recurrence rate at 
1, 2 and 3 years. The adverse events were mild [16]. Another study 
(60 patients) compared the effect of HuaChansu injection combined 

Fig. 1. Structure of bufalin.  

Table 1 
Apoptotic mediators affected by bufalin.  

Increase Decrease /Loss  

cleaved caspase 3  Glioma [49,50], glioblastoma [48], 
osteosarcoma [51], large B cell 
lymphoma [52], multiple myeloma  
[39], melanoma [53], lung [35], 
nasopharyngeal [54], oesophageal  
[46], hepatocellular [27,32], bladder 
[38,55], prostate [34], oral [31] and 
colon cancer in vitro [40,56] but also 
in vivo [28] 

caspase 4  Nasopharyngeal carcinoma [54] 
cleaved caspase 7  Bladder carcinoma [55] and 

colorectal cancer [57] 
cleaved caspase 8  Prostate cancer [34], bladder 

carcinoma [38], melanoma [53], 
nasopgaryngeal carcinoma [54] and 
hepatocellular carcinoma [32] 

cleaved caspase 9  Glioblastoma [48], osteosarcoma  
[51], leukemia [58], melanoma  
[53], nasopharyngeal carcinoma  
[54], hepatocellular carcinoma [32, 
54], prostate [34], colorectal [28, 
57], bladder [38,55] and lung cancer 
[35]. 

caspase 10  Hepatocellular carcinoma [32] 
APAF  Bladder cancer [55], nasopharyngeal 

carcinoma [54], oral carcinoma [31] 
and lung cancer [35] 

cleaved-Parp  osteosarcoma [51], glioma [50], 
large B cell lymphoma [52], breast  
[25], colon [30,57], lung [35], 
tongue [59], gastric [60], and 
prostate cancer [47] 

Bax/Bcl-2 ratio  Osteosarcoma [51], large B cell 
lymphoma [52], glioma [50], 
glioblastoma [48], hepatocellular 
and nasopharyngeal carcinomas [32, 
54,61], colorectal [28,56,57], 
bladder [38,55], gastric [60] and 
tongue cancer [59] 

Bak  Osteosarcoma [62], leukemia [58], 
nasopharyngeal carcinoma [54] and 
colorectal cancer [28] 

Bad  Colorectal cancer [40] and 
oesophageal carcinoma [46] 

Bid  Nasopharyngeal [54] and 
hepatocellular carcinoma [32] 

AIF  Osteosarcoma [62], melanoma [53], 
tongue [59], oral [31] and bladder 
cancer [55] 

cytochrome c 
release  

Leukemia [58], osteosarcoma [51, 
62], glioblastoma [48–50], 
melanoma [53], hepatocellular 
carcinoma [32], lung cancer [35], 
nasopharyngeal carcinoma [54], oral 
carcinoma [31], bladder carcinoma  
[55] and prostate cancer [34] 

endo G release  Osteosarcoma [62], melanoma [53], 
nasopharyngeal carcinoma [54], 
tongue carcinoma [59] and lung 
cancer [35] 

intra-cellular Ca++

concentration  
Melanoma [53] and tongue 
carcinoma [59]  

mitochondrial 
membrane potential 

Osteosarcoma [51], glioblastoma  
[48,49], melanoma [27], 
hepatocellular carcinoma [32], lung 
cancer [35], tongue carcinoma [59], 
bladder carcinoma [38] and colon 
cancer [30]  

Bcl-2 Osteosarcoma [62], leukemia [58], 
oesophageal [46] and lung cancer  
[35]  

Bcl-xL Osteosarcoma [63], nasopharyngeal  
[54], prostate [24] and colorectal 
cancer [28,56] 

(continued on next page) 
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with stereotactic body gamma knife radiosurgery versus gamma 
knife alone. The results indicated clear benefits of the combination 
with improved 1-year survival, overall survival and disease-free 
progression as well as quality of life with reduced side effects and 
analgesic use in the combination cohort [17]. Finally, a study using 
HuaChansu alone (100 patients) reported a lower progression rate, 
an increased survival rate and improved liver function as well as 
patient quality of life [18]. 

– In non-small-cell lung cancer, a metanalysis (32 studies, 2753 pa-
tients) investigated the combination of HuaChansu with platinum- 
based chemotherapy. The results indicated that the combination 
improved the overall response rate and the 1- and 2-years survival 
rates as well as the quality of life by alleviating chemotherapy- 
induced adverse effects (neutropenia, thrombocytopenia, nausea, 
vomiting, anaemia, liver injury, renal injury, and alopecia) [19]. 
Another study (64 patients) investigated HuaChansu versus chemo-
therapy as maintenance therapy after response to chemotherapy. The 
results reported similar overall survival but improved quality of life 
and 1-year survival rate [20]. A third study (64 patients on mainte-
nance therapy after a 1st line chemotherapy), more focused on im-
munity, reported decreased serum concentration of CTLA-4 in 
patients treated with HuaChansu compared with chemotherapy 
[21]. 

– In gastric cancer, a metanalysis (14 studies, 976 patients) investi-
gated the combination of HuaChansu with chemotherapy versus 
chemotherapy alone and highlighted improved response rate and 
quality of life with the combination [22].  

– In gallbladder carcinoma, a clinical trial (25 patients) assessed the 
efficacy and safety of gemcitabine-oxaliplatin combined with Hua-
Chansu. The combined treatment was well tolerated with moderate 
myelosuppression as the main toxicity. In this study, 23 patients 
were evaluated, 8 (34.8 %) had partial response while 7 (30.4 %) had 
stable disease [23]. 

Altogether, these clinical trials reported a benefit to patients from the 
use of HuaChansu in combination with chemotherapy in many cancers. 

1.2. In vitro and animal studies 

Nowadays, the vast majority of experiments conducted with bufalin 
were in vitro studies mainly using cancer cell lines and, in some cases, 
using primary cultures when specified. In addition, a few in vivo studies 
were performed and reported below when available. 

2. Bufalin induces apoptosis in cancer cells 

Bufalin causes DNA fragmentation as observed by TUNEL assay in in 
vivo models of human prostate, breast, pancreatic, hepatocellular, and 
colorectal cancer exposed to bufalin [24–28]. 

2.1. Caspase-induced apoptosis 

Bufalin promotes the expression, cleavage, and activity of caspases in 
various cancers (Table 1). Also, a large scale analysis of genes in lung 
cancer cells exposed to bufalin indicated that CASP9 gene was upregu-
lated by 5.5 fold [29]. Moreover, the use of pan-caspase inhibitors in 
colorectal cancer rescued cells from apoptotic death [30]. A similar 
result was obtained in oral squamous cell carcinoma with the use of 
caspase 3 or 9 inhibitors [31], as well as in hepatocellular carcinoma 

exposed to either caspase 3, 8, 9 or 10 inhibitors [32]. 
Three different mechanisms underly caspase activation by bufalin: 1) 

in colorectal cancer, caspase 3 activation was linked to Bax and Bak 
since the knockout of either one prevented bufalin-stimulated increase 
in cleaved caspase 3 [28]; 2) in lung cancer, bufalin-promoted caspase 3 
activation could be prevented by N-acetylcysteine (NAC) thus indicating 
its stimulation of oxidative stress [33]; 3) in hepatocellular carcinoma, a 
crucial role of bufalin in inducing Fas-mediated caspase 10-dependent 
apoptosis pathway was highlighted [32]. Furthermore, in prostate 
cancer, bufalin increased Fas levels [18], while the use of siRNA to 
knock down Fas expression led to a restored cell viability. Increased 
levels of Fas and Fas-ligand were documented also in lung cancer [35]. 
Of note, in bladder carcinoma, bufalin treatment led to the down-
regulation of cellular Fas-associated death domain-like inter-
leukin-1β-converting enzyme inhibitory protein and X-linked inhibitor 
of apoptosis protein [36], while an increased expression of APAF, which 
links cytochrome c to activated caspase 9, has also been reported in 
many cancers (Table 1). 

Bufalin also affects Parp protein cleavage, Parp being a molecular 
indicator of caspase-mediated cell death. (Table 1). In breast cancer, 
Parp inhibition prevented bufalin-induced cell death [37]. The cleavage 
of Parp in bufalin-treated cells is linked to caspases activation. Indeed, 
the cleaved Parp induction in colon cancer following bufalin exposure 
was reversed with pan-caspase inhibitors [30]. A study on bladder 
cancer indicated that the degradation of Parp polymerases was 
concomitant with the proteolytic activation of caspases 3, 8 and 9 [38]. 
Parp cleavage was also induced by ROS after bufalin treatment as NAC 
decreases the cleaved Parp accumulation in colorectal cancer [30]. 
Finally, a study in multiple myeloma indicated that PARP1 over-
expression partially suppressed bufalin-induced apoptosis [39]. 

2.2. Bcl-2 protein family-mediated apoptosis 

A decreased Bcl-2 expression had been documented in many cancer 
types (Table 1). In addition, an increased Bax/Bcl-2 ratio has been also 
observed in many studies (Table 1). Concerning the protein Bax, its 
expression was upregulated in colorectal cancer and hepatocellular 
carcinoma [40,41], while it was redirected from the cytosol to the 
mitochondria in prostate and lung cancers [33,34]. Bax translocation 
was associated with ROS as NAC inhibited it [33]. In osteosarcoma, a 
downregulation of TPTC1 (tumour protein translationally-controlled 1), 
a Bax antagonist, was also observed [42], whereas an increased 
expression of the pro-apoptotic proteins Bak, Bad and Bid could also be 
induced by bufalin (Table 1). 

Similarly, the expression of the anti-apoptotic protein Bcl-xL as well 
as Mcl-1 were decreased in many cancers treated with bufalin. In NSCLC, 
Mcl-1 overexpression moderated the bufalin-induced apoptosis. More-
over, decreased Mcl-1 levels by bufalin are linked to its proteasomal 
degradation. Indeed, only the Mcl-1 protein level was decreased while 
the mRNA rate did not change and the use of the proteasome inhibitor 
MG132 supressed the decrease in Mcl-1 protein level. A Mcl-1 ubiq-
uitination was also observed by immunoprecipitation. This mechanism 
was linked to the activation of GSK3-β by bufalin as GSK3 siRNA blocked 
the Mcl-1 proteasomal degradation [43]. In gallbladder cancer, Mcl-1 
decrease was associated to the inhibition of phosphorylated c-Met by 
bufalin [44], while in breast cancer, it was associated with the inhibition 
of the transcriptional factor STAT3 [45]. 

2.3. IAP (inhibitor of apoptosis protein family)-mediated apoptosis 

After bufalin treatment, decreases in survivin and livin levels were 
observed in colorectal cancer [12], and cIAP1 level was decreased in 
oesophageal carcinoma [46]. In bladder cancer, bufalin caused an in-
crease of Bax/Bcl-2 ratio leading to a downregulation of IAP family 
members [38]. By contrast, other studies documented increased levels of 
the AIF in cancers treated with bufalin (Table 1). 

Table 1 (continued ) 

Increase Decrease /Loss   

Mcl-1 Large B cell lymphoma [52], 
gallbladder carcinoma [44], breast 
cancer [45] and NSCLC [43]  
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2.4. p53-mediated apoptosis 

An increased p53 protein level has been observed in prostate and 
lung cancers treated with bufalin, where it was associated with an 
increased p21 protein level [24,47]. A study in glioblastoma reported an 
increased nuclear translocation of p53 following bufalin exposure. This 
nuclear p53 accumulation was induced by a decrease of the XPO1 
exportin expression. These results were highly supported by the fact that 
exportin inhibitor leptomycin B, a known potent and selective inhibitor 
of p53 nuclear export, caused the same nuclear retention of p53 as the 
one obtained by bufalin. Silencing XPO1 led to an increase in nuclear 
p53 expression and consequently attenuated bufalin effect [48]. Addi-
tional studies highlighted the crucial role of p53 in bufalin-induced 
apoptosis. Indeed, bufalin induced apoptosis in WT p53 colorectal 
cancer cells and autophagy in mutant p53 cells, while p53 down-
regulation restored cell viability [34]. Similar results were obtained in 
prostate cancer [48] where bufalin induced apoptosis in WT and mutant 
p53 cells but not in p53-null cells [47]. 

2.5. Death receptor-induced apoptosis 

Following bufalin treatment, death receptor proteins and death 
receptor-related factors were upregulated in bladder cancer [36,38] 
while DR4 and DR5 were upregulated in nasopharyngeal carcinoma 
[54]. In breast cancer, bufalin upregulated DR4 and DR5 and this effect 
was linked to the activation of ERK, JNK and p38-MAPK and the 
downregulation of Cbl-b [64]. Another study indicated that bufalin 
promoted the clustering of DR4 and DR5 in aggregated lipid rafts and 
the use of a cholesterol-sequestering agent reversed such clustering and 
reduced bufalin-induced apoptosis [65]. In the latter three studies, 
bufalin also increased TRAIL expression, known to be involved in the 
induction of apoptosis [54,64,65]. Likewise, in breast cancer, bufalin 
downregulated Mcl-1 expression and promoted TRAIL-induced 
apoptosis [45]. 

2.6. Mitochondria-induced apoptosis 

Bufalin modifies mitochondria morphology and biogenesis. A study 
in glioma using MitoTracker green and Transmission Electron Micro-
scopy reported that bufalin led to a relatively loose mitochondrial 
network and caused mitochondria to split into many smaller mito-
chondria which affects their function. [49]. Bufalin also affected the 
expression of the mitochondrial division/fusion related proteins DRP1 
and MFN2. DRP1 was downregulated in the cytoplasm but upregulated 
in mitochondria, while the opposite observation was reported for MFN2. 
These data indicate that bufalin can disrupt the mitochondrial divi-
sion/fusion balance to induce apoptosis [49]. Bufalin also decreased the 
oxygen consumption rate, an indicator of mitochondrial function, in 
glioblastoma [48]. Finally, bufalin stimulated the release of cytochrome 
c from the mitochondria to the cytosol and upregulated the proapoptotic 
nuclease endonuclease G release by mitochondria and its nuclear 
translocation [49]. 

2.7. Stress-induced apoptosis 

An increased intracellular Ca++ concentration was also observed 
after bufalin treatment and was associated with the loss of mitochon-
drial membrane potential (MMP). In osteosarcoma, the loss of MMP was 
a consequence of the downregulation of protein phosphatase 2 (PPA2) 
[42] and was associated with a production of mitochondrial ROS in 
many cancers including melanoma, colon and lung cancer [30,35,53]. In 
neuroblastoma, this bufalin-induced ROS production led to the disrup-
tion of the electron transport chain and NAC inhibited bufalin-induced 
apoptosis [66]. In lung cancer, the production of ROS by bufalin medi-
ated mitochondrial permeability transition [33]. In glioblastoma, ROS 
production was associated to bufalin-induced DNA damage. Indeed, an 

increased fluorescence of phosphorylated H2AX was observed following 
bufalin treatment and its was attenuated with NAC [48]. A study on 
pancreatic and oral cancers indicated that bufalin induces apoptosis by 
downregulating hTERT expression (hTERT protects against mitochon-
drial damage by binding to mitochondrial DNA and reducing mito-
chondrial ROS production) related to an increased phosphorylation of 
JNK and p38-MAPK. Actually, the use of JNK or p38-MAPK inhibitors 
opposed bufalin-induced hTERT downregulation and hence moderated 
apoptosis induction by the mitochondrial pathway [67]. 

Bufalin leads to endoplasmic reticulum (ER)-stress induced apoptosis 
as indicated by changes in the expression of ER stress markers. In 
nasopharyngeal carcinoma, bufalin increased GRP78, IRE-1α and IRE-1β 
(inositol-requiring enzyme 1), ATF-6α, Calpain 1 and GADD153 [54]. In 
glioma, bufalin exposure led to the upregulation of CHOP (C/EBP ho-
mologous protein) and GPR78. The role of ER stress response was 
confirmed by the attenuated bufalin-induced apoptosis in cells trans-
fected with siCHOP RNA. In this context, ER stress was associated with 
an increased phosphorylation of ERK and eIF2a [50]. In gastric cancer, 
bufalin led to ER stress via the IRE1-JNK pathway and to a significantly 
increased expression/phosphorylation of target genes of the ER stress 
pathway including IRE1, CHOP and p-eIF2a. 

Modulation of the anti-apoptotic protein Hsp27 level by bufalin also 
plays a key role in apoptosis induction. Its expression significantly 
decreased after bufalin exposure in osteosarcoma and pancreatic cancers 
[42,68]. A comparative proteomics approach reported that the level of 
the anti-apoptotic protein Hsp27 remarkably decreased after treatment 
with bufalin. Bufalin downregulates Hsp27 in vitro and in vivo through 
proteasomal degradation to induce apoptosis. Ectopic expression of 
Hsp27 reduced the bufalin-induced apoptosis [42]. 

2.8. Other mechanisms inducing apoptosis 

In glioma, bufalin induces the mitochondrial translocation of 
Annexin A2 to modulate apoptosis [49]. In prostate cancer, the protein 
level of AR and its transcriptional target PSA were decreased by bufalin, 
while the AR coactivators SRC-1 and SRC-3 were suppressed, and these 
downregulations were not dissociable from apoptosis [47]. In leukemia, 
Tiam1 was upregulated by bufalin, and this led to the activation of Rac1, 
PAK and JNK pathway and to apoptosis. Regarding TNF-induced 
apoptosis, bufalin increased THAP1 in lung cancer [29] and FADD in 
nasopharyngeal carcinoma [54], suggesting that bufalin could improve 
the apoptotic effect of TNF. 

3. Bufalin induces necroptosis in cancer cells 

Necroptosis is another type of cell death distinct from apoptosis that 
can be induced by DNA damage, oxidative stress, and specific receptors. 
Necroptosis is mainly mediated by the TNF receptor superfamily. When 
cancer cells are stimulated to activate TNF receptors, caspase 8 activa-
tion is inhibited to block apoptosis. RIP1 and RIP3 are phosphorylated to 
form a necrotic complex which associates to PGAM5, disintegrates 
mitochondria and induces necroptosis. Inducing necroptosis could be a 
way to overcome resistance to apoptosis, for example MDR over-
expression in breast cancer [69]. 

In breast cancer, bufalin upregulated RIP1, p-RIP1, RIP3 and PGAM5 
[37,69,70]. The necroptosis inhibitor Nec-1 and the ROS scavenger NAC 
but not pan-caspases inhibitors decreased bufalin-induced necroptosis 
indicating that bufalin stimulated ROS production to induce necroptosis 
[69,70]. In another study, bufalin-induced cell death was prevented by 
RIP1 inhibitor or RIP3 shRNA while RIP3 ectopic expression enhanced 
bufalin-induced cell death [37]. Moreover, it also increased TNFα levels 
and the phosphorylation of the TNF receptor [70]. 

In glioblastoma, bufalin induced necroptosis in cells that escaped 
from apoptosis. Indeed, when caspase-8 was functionally lost, nec-
roptosis occurred through the formation of a necrosome complex con-
taining RIPK1, RIPK2 and MLKL (mixed lineage kinase domain-like 
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protein). In this context, increases in TNF, TNFR1 and RIPKK were also 
observed [71]. 

4. Bufalin induces autophagy in cancer cells 

Bufalin has been reported to induce autophagy but it is highly 
dependent on the cell characteristics and type. Indeed, in cells har-
bouring wild type p53, bufalin mainly induces apoptosis while it induces 
autophagy in mutant p53 cells [30]. Depending on the context, auto-
phagy can be viewed as a protective mechanism to escape apoptosis or 
as an alternative mechanism to kill the cell. When bufalin-induced 
autophagy acts as a protective mechanism, it could be validated by 
using an autophagy inhibitor [49,50,72,73]. For example, in hepato-
cellular carcinoma, autophagy induction was highlighted by the obser-
vation of double-membrane vacuoles by transmission electron 
microscopy, the detection of acidic vesicular organelles using acridine 
orange staining, and the cleavage of microtubule-associated protein 
light chain 3 (LC3). In this context, autophagy inhibitor opposed the 
effect of bufalin on cell viability but enhanced apoptosis [27]. Bufalin 
induced autophagy by increasing the conversion of LC3-I to LC3-II thus 
leading to increased levels of LC3-II. This has been observed in colo-
rectal cancer [74], hepatocellular carcinoma [73,75,76], glioma [50] 
and gastric cancer [49]. This increase in LC3-II rate was associated to an 
increased expression of Beclin-1 in colorectal cancer [74] and hepato-
cellular carcinoma [62–65], and a decreased expression of p62 through 
proteasomal degradation in hepatocellular carcinoma [76] and gastric 
cancer [49]. Bufalin-induced autophagy can be triggered by ROS and 
ER-stress which leads to the activation of the IRE1-JNK pathway. This 
was observed in gastric [49] and colorectal cancer [74] as well as in 

hepatocellular carcinoma [76]. Another way to trigger autophagy is 
through the depletion of ATP and the activation of the AMPK-mTOR 
pathway. Indeed, bufalin-induced ATP depletion leads to the phos-
phorylation of AMPK which decreases the phosphorylation of mTOR and 
its downstream targets 4EBP1 and P70S6K1. The pERK/eIF2α/CHOP 
pathway also plays a crucial role in this process [50,72,75]. The levels of 
other autophagy-related proteins such as ATG5 and ATG8 were 
increased in colorectal cancer [74] and hepatocellular carcinoma [76]. 

5. Bufalin induces senescence in cancer cells 

Studies on multiple myeloma and prostate cancer also highlighted a 
senescence-like inducing effect of bufalin. It was observed by an 
increased volume of the cells and by an increase in the number of SA-Gal 
positive cells [47,77]. In prostate cancer, bufalin induced a selective 
activation of p53-related senescence. Moreover, bufalin stimulated the 
expression of genes related to senescence such as CYR6/CCNI and its 
related family member CTGF/CCN2 as well as the p53 target gene 
CDKN1A (p21). 

6. Bufalin modulates cell cycle and proliferation in cancer cells 

Bufalin induced a cell cycle arrest in G2/M phase in many cancer 
types that were associated with a decreased activity of Cdk1 [78]. In 
leukemia, the effect of bufalin on cell cycle was similar to that of 
topoisomerase inhibitors with a selective inhibition of the activity of 
topoisomerase II but not topoisomerase I [79]. Other studies highlighted 
a G0/G1 phase arrest explained by the decreased expression of cyclin 
but also of cyclin-dependant kinases (Table 2). Bufalin also modulated 
the expression and activity of Cdc25a and Cdc25c which have a role in 
mitotic progression (Table 2). This was often associated with an 
increased expression of p21 and p27, two universal cyclin inhibitors, 
p27 controlling cell cycle transition from S to G2 phase [80] (Table 2). 

More specific mechanisms implicated in cell cycle and proliferation 
arrests induced by bufalin are described in the literature. In leukemia, 
bufalin increased the casein kinase 2 (CK2) activity through its nuclear 
translocation [79], whereas it inhibited the activity of PKA and PKC [79] 
or it binds to β-tubulin [58] to decrease proliferation. In colorectal 

Table 2 
Cell cycle and proliferation regulators affected by bufalin.  

Increase Decrease/ 
Loss  

p27  NSCLC [80], hepatocellular carcinoma [83] and 
colorectal cancer [28] 

p21  Large B cell lymphoma [52], prostate cancer [47] 
and colorectal cancer [28] 

p53 and p- 
p53  

Hepatocellular carcinoma [78], glioma [49], 
prostate cancer [47] and NSCLC [84] 

G2/M 
arrest  

Hepatocellular carcinoma [27,78,85], TNBC [25], 
gallbladder carcinoma [44], leukemia [58,79], renal 
cell carcinoma [86], bladder carcinoma [38], 
osteosarcoma [51], oesophageal carcinoma [87], 
glioblastoma [88] and multiple myeloma [39] (in 
vitro) 
colorectal [28] and prostate cancer [47] (in vivo) 

G0-G1 
arrest  

Oral carcinoma [31], ovarian and endometrial 
cancers [89], hepatocellular carcinoma [61], bladder 
[55] and gastric cancer [60], NSCLC [80] and glioma 
[49] 

S phase 
arrest  

Oesophageal carcinoma [87], ovarian and 
endometrial cancers [89]  

Cyclin A Hepatocellular carcinoma [27,78] and colorectal 
cancer [28]  

Cyclin B1 Hepatocellular carcinoma [27,78], renal cell 
carcinoma [86] and large B cell lymphoma [52]  

Cyclin D1 Bladder carcinoma [31], NSCLC [80] (in vitro) and 
colorectal cancer (in vivo) [28]  

Cyclin E1 Bladder carcinoma [31], NSCLC[80] (in vitro) and 
colorectal cancer (in vivo) [28]  

CDK1, p- 
CDK1 

Hepatocellular carcinoma [27,78], renal cell 
carcinoma [86] and large B cell lymphoma [52]  

CDK2 Bladder carcinoma [55] (in vitro) and colorectal [28] 
(in vivo)  

CDK4 Bladder carcinoma [55] (in vitro) and colorectal [28] 
(in vivo)  

CDK6 Hepatocellular carcinoma [83]  
Cdc25a 
Cdc25c, 
p-Cdc25c 

Hepatocellular carcinoma [27,85] 
Hepatocellular carcinoma [83,85]  

Table 3 
Signalling pathway regulators affected by bufalin.  

Increase Decrease/ 
loss  

PTEN  Colorectal cancer [40] 
p-JNK  Hepatocellular carcinoma [78], pancreatic cancer [105], 

leukemia [98], breast cancer [64], gastric cancer [60], 
pancreatic and oral carcinomas [67] 

p-p38  Hepatocellular carcinoma [78], breast cancer [64], 
pancreatic and oral carcinomas [67]  

(p-)EGFR Ovarian carcinoma [106] and hepatocellular carcinoma  
[83]  

VEGFR1/2 Hepatocellular carcinoma [94,99]  
p-c-Met Gallbladder cancer [44]  
Axl NSCLC [107]  
p-PI3K Hepatocellular carcinoma [94], lung cancer [108] and 

colorectal cancer [28]  
p-AKT Ovarian carcinoma [106], renal cell carcinoma[86], 

hepatocellular carcinoma [27,90,92,94], lung cancer  
[108,109] and colorectal cancer [28,40]  

p-mTOR Ovarian carcinoma [93], renal cell carcinoma [86], 
hepatocellular carcinoma [27] and gastric cancer [72]  

p-ERK Ovarian carcinoma [106], hepatocellular carcinoma [78, 
110], gastric cancer [111], lung cancer [108] and 
osteosarcoma [112]  

p-p38 Gastric cancer [111] and lung cancer [108]  
(p-)NF-kB Lung cancer [108], hepatocellular carcinoma [94] and 

colorectal cancer [81]  
p-AMPK Hepatocellular carcinoma [75], glioma [50] and 

oesophageal carcinoma [46]  
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cancer, bufalin induced a mitotic arrest through the downregulation of 
the polo-like kinase 1 (Plk1) [81] or through the inhibition of Aurora 
A/B activation [82]. Finally, a gene expression study in lung cancer 
reported the downregulation of CCPG1 (cell cycle progression protein 1) 
and of CDCA7L (cell division cycle-associated 7-like protein) [29]. 

7. Bufalin modulates the activation of specific signalling 
pathways in cancer cells 

Bufalin modifies the expression and phosphorylation of some re-
ceptors such as EGFR, VEGFR, c-Met or Axl (Table 3). 

Bufalin regulates the PI3K/AKT signaling pathway (Table 3) and in 
oral carcinomas, AKT overexpression is associated with resistance to 
bufalin [31]. In colorectal cancer and hepatocellular carcinoma, this 
effect leads to a decrease in mTOR phosphorylation and an increased 
GSK-3β activity [28,90–92]. In ovarian carcinoma, bufalin decreases 
kinase S6K phosphorylation downstream of mTOR [93]. In parallel, 
MAPK pathway was as well modulated by bufalin. Indeed, bufalin 
decreased MEKK3 and MKK7 in hepatocellular carcinoma [94]. 
Accordingly, ERK phosphorylation was also decreased in many cancer 
types following bufalin exposure (Table 3). However, the activity of 
bufalin on ERK phosphorylation differs among studies and cancer types. 
Indeed, bufalin generally moderates ERK phosphorylation but, 
conversely, it can also induce its phosphorylation in some tumour types. 
For example, in bladder carcinoma, bufalin promoted p-ERK, while ERK 
inhibitor opposes bufalin inhibitory effect on migration [95]. An 
increased ERK phosphorylation was also observed in hepatocellular 
carcinoma cells exposed to bufalin [96] and in breast cancer where it 
was associated with induction of apoptosis [64]. In leukemia, a persis-
tent activation of MAPK by bufalin was involved in the induction of 
apoptosis [97]. Of note, the phosphorylation of the p38-MAPK protein 
was either increased or decreased according to different studies, how-
ever, in those where p38 phosphorylation was increased, the use of a 
p38 inhibitor decreased bufalin-induced apoptosis [64,67]. 

Bufalin also activates JNK pathway by increasing JNK phosphory-
lation in many cancer types and nuclear translocation of its target c-Jun 
in leukemia [98] (Table 3). Moreover, JNK inhibitor decreased 
bufalin-induced apoptosis [64,67]. 

The Hedgehog signaling pathway was also inhibited by bufalin. The 
expression levels of PTCH2 and Gli proteins were downregulated by 

bufalin in liver cancer [99]. Additionally, NF-kB expression, phosphor-
ylation and nuclear translocation were decreased by bufalin (Table 3). 

Moreover, cell exposure to bufalin promotes the phosphorylation of 
AMPK leading to the inhibition of its downstream targets mTOR, 
p70S6K and 4EBP1 in glioma and oesophageal carcinoma [46,50]. 

Many studies demonstrated that bufalin is a potent inhibitor of the 
transcriptional coactivators SRC-1 and SRC-3 through proteasomal 
degradation. This was highlighted in triple-negative breast cancer 
(TNBC) where SRC-3 is a prognostic marker associated with poor overall 
survival and progression-free survival [100], but also in other breast 
cancer subtypes [101,102]. SRC-3 was also emphasized in glioblastoma 
[103] and in prostate cancer where it is associated with a low level of 
active androgen receptor (AR) and its downstream target PSA (prostate 
specific antigen) [47]. A molecular docking model in colorectal cancer 
indicated that bufalin could directly bind SRC-3 to inhibit its activity 
[104]. 

8. Bufalin modulates protein translation 

Bufalin affected protein translation by inhibiting mTOR activity, as 
discussed above, but also acted on the translation of more cancer- 
specific mRNA related to the eIF4F translation initiation complex. A 

Fig. 2. Direct interactions of bufalin with ATP1A1, SDC-4 and SRC-3 affecting gene transcription and mRNA translation in cancer (need to be printed in colours).  

Table 4 
Sodium pump is a direct target of bufalin.  

Bufalin 
effect  

ATP1A1↓  • In melanoma: ATP1A1 level positively correlated with bufalin 
response [115]  

• In glioblastoma: decreased ATP1A1 expression through 
proteasomal degradation (in vitro and in vivo) [48,116] and 
ATP1A1 KO markedly increased the IC50 values of bufalin [48]  

• High level of ATP1A1 increased cellular levels of glutathione which 
delayed and reduced apoptosis [117] 

ATP1A3↓  • In bladder carcinoma: bufalin supressed expression of ATP1A3. 
ATP1A3 KO decreased bufalin-induced apoptosis [118]  

• In hepatocellular carcinoma: ATP1A3 level positively correlated 
with bufalin response and ATP1A3 KO increased the IC50 value for 
bufalin [96]  

• In colorectal cancer: ATP1A3 KO or bufalin decrease COX2 
expression in a similar way [28]  
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recent study in TNBC identified bufalin as a novel inhibitor of eIF4A- 
mediated translation by acting on c-MYC translational activity to 
downregulate eIF4A and eIF4G [113] (Fig. 2). 

9. Bufalin interacts with the sodium pump 

In relation with its steroid structure, bufalin can act on the Na+/K+
ATPase pump to mediate its anticancer effects [49,82]. More specif-
ically, the main targets of bufalin are the isoforms ATP1A1 or ATP1A3, 
depending on the cancer type (Table 4). However, the effect seems 

restricted to caveolae to mediate its impact on the Na+/K+ ATPase 
signalosome [114] (Fig. 2). 

10. Bufalin acts on cancer cell metabolisms 

Bufalin may affect the metabolism of cancer cells by 3 main mech-
anisms impacting mitochondria, glycolysis and lipid metabolism.  

1) Mitochondrial metabolism: Bufalin is associated with disruption of 
mitochondrial membrane potential and decreased oxygen con-
sumption and ATP production [49,50,88]. The latter leads to AMPK 
phosphorylation and activation [50]. Moreover, in glioma, using 
MitoTracker green, bufalin exposure was linked to scattered mito-
chondria associated with a relatively loose network and a decreased 
mitochondria fluorescence. In addition, transmission electron mi-
croscopy revealed that bufalin can increase mitochondrial number, 
density and swelling, and reduce its surface area and volume. Thus 
bufalin causes mitochondrion to split into a number of smaller 
mitochondria, thereby affecting mitochondrial function [49].  

2) Glycolysis: Bufalin moderates glucose uptake and lactate production 
in ovarian carcinoma in vitro and in vivo and is associated with low 
levels of glycolysis-related proteins, including GLUT4, LDHB and 
HK2 [119].  

3) Lipid metabolism: In hepatocellular carcinoma, bufalin modulates 
sphingolipid and glycerophospholipid metabolism leading to the 
disruption of tumour cell membranes but mainly located within the 
non-necrotic areas [120]. Also, bufalin affects the metabolism of a 
number of animo acids including phenylalanine, histidine, gluta-
mate, aspartate, methionine, glutamine, isoleucine, proline, serine or 
carnitine (synthesized in the liver from methionine and lysine). As 
carnitine plays a crucial role in fatty acid transport within the 
mitochondrial matrix for β-oxidation, bufalin can compromise en-
ergy production [121]. 

11. Bufalin sensitizes resistant cancer cells to conventional 
therapies 

Combination of bufalin with chemo or targeted therapies have 
proven beneficial compared to each drug alone (Table 5). Moreover, in 
the context of cancer with resistance to treatment, bufalin was able to 
reverse the resistance to certain therapies or to kill resistant cells. These 
effects were often linked to the inhibition of MDR1 pathway. For 
example, in colorectal cancer, doxorubicin (DOX) uptake experiment 
indicated that bufalin significantly increased the intracellular drug 
concentration [122,123]. In multidrug-resistant hepatocellular carci-
noma, bufalin enhanced chemosensitivity by inhibiting drug efflux 
pump activity via the downregulation of MRP1 [61]. A similar MRP1 
downregulation by bufalin was observed in leukemia cells with 
vincristine-acquired multidrug resistance which then led to an increased 
intracellular levels of adriamycin [124]. 

Table 5 
Effects of bufalin in combination with other treatments.  

Effect on Cancer type  

Macrophages 
NF-kB/MDR1 
ABCB1 
transporter 
Apoptosis 
Stemness 
markers 

Colorectal cancer  • Enhanced antitumoral effect of 
oxaliplatin by decreasing M2 
macrophages polarization [104]  

• Increased sensitivity of adriamycin- 
resistant cells to doxorubicin, mito-
mycin C, vincristine, and cyclophos-
phamide in vitro and increased 
antitumor effects of DOX in vivo. These 
effects are linked to its activity on the 
NF-kB/MDR1 pathway [122]  

• Increased doxorubicin antitumor 
activity in vitro and in vivo by reducing 
ABCB1 transporter level [123]  

• Enhanced cytotoxicity of 5-fluorouracil 
by a synergistic effect of the combina-
tion on apoptosis induction [125]  

• Chemoprophylactic activity [28]  
• Synergistic effect of bufalin combined 

with cisplatin on apoptosis induction 
and decrease of stemness markers 
which are associated with resistance to 
treatment [126] 

Cell growth 
Apoptosis 
Angiogenesis 

Hepatocellular 
carcinoma  

• Increased sensitivity of HBV-associated 
HCC refractory to sorafenib [127]  

• Synergistic effect of the bufalin- 
sorafenib combination on growth inhi-
bition and apoptosis induction [110, 
128,129]  

• Activity on sorafenib-resistant cells 
[129]  

• Enhanced anti-angiogenic effect of the 
bufalin/sorafenib combination [130]  

• Enhanced the chemosensitivity to 5-FU 
by inducing apoptosis [61] 

Apoptosis Gastric cancer  • Reversed intrinsic and acquired 
cisplatin resistance by inducing 
apoptosis through the AKT pathway 
[131]  

Ovarian cancer  • Bufalin improves cisplatin 
responsiveness by decreasing HIF-1a 
[93]  

Gallbladder 
carcinoma  

• Bufalin enhances chemotherapeutic 
sensitivity [44]  

Cervical cancer  • Increased the chemotherapeutic 
efficacy of paclitaxel [132]  

Osteosarcoma  • Apoptosis induction in methotrexate 
resistant cells [42,63]  

Glioma  • Improved the inhibitory effect of TMZ 
by activating the mitochondrial 
apoptotic pathway [133]  

• Increased sensitivity to radiotherapy by 
reducing DNA repair function [88]  

Leukemia  • Combination of bufalin with the MEKi 
PD98059 has a synergistic effect on 
decreasing proliferation and inducing 
apoptosis [134]  

Pancreatic cancer  • Enhanced the chemosensitivity to 
gemcitabine [105]  

• Increased apoptosis induction by the 
bufalin-HIFU (High Intensity Focused 
Ultrasound) combination [135]  

Table 6 
MicroRNAs involved in bufalin antitumor effect.  

Bufalin effect 
on  

miR-522–3P ↓ Involved in NSCLC development [137] 
miR-181a ↑ Involved in apoptosis induction by repressing its target gene Bcl-2 

in prostate cancer [138] 
miR-298 ↓ Block apoptosis by increasing its target BAX in gastric cancer [139] 
miR-497 ↓ Associated with decreased angiogenesis and metastasis in colorectal 

cancer [140] 
miR-203 ↑ Associated with decreased stemness in glioma [141] 
miR-148a ↑ Associated with decreased stemness in osteosarcoma [142] 

*↑: increase; ↓: decrease. 
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12. Bufalin modulates microRNAs in cancer cells 

Bufalin modulates the expression of specific microRNAs responsible 
for cancer development and has an antitumor effect (Table 6). In pros-
tate cancer, it affected long non-coding RNAs (lncRNA) known to 
interact with miRNAs. The study reports that bufalin decreased HOTAIR, 
a crucial lncRNA upregulated in bone metastases, and promotes me-
tastases by binding to miR-520b and thus increasing the oncogene 
FGFR1 and consequently moderating the metastatic potential of prostate 
cancer [136]. 

13. Bufalin induces phenotype switching/EMT towards 
differentiation and reverses cell stemness 

In melanoma, bufalin activates tyrosinase and thus stimulates 
melanogenesis and pigmentation that is associated with a more differ-
entiated/melanocytic phenotype [143]. Many studies also indicate that 
bufalin is a potent inducer of differentiation in leukemia cell lines and 
primary cultures accompanied by a loss of cell proliferation and 
adherence affecting viability and an increased expression of IL-1β. 
Similarly, the induction of cell differentiation was enhanced by All-trans 
retinoic acid known to affect cell growth and apoptosis [144–149]. 

Cancer stem cells (CSC) possess enhanced tumour-forming capabil-
ities and are resistant to current anticancer therapies. In line with its 
ability to promote cancer cell differentiation, bufalin attenuates stem 
cell characteristics in many cancer types (Table 7). This was mainly 
observed through the inhibition of spheroid formation and the 
decreased expression of stemness-associated proteins SOX2 and OCT4 
and stem cell-surface marker proteins CD133 and CD44 (Table 7). In 
gallbladder cancer, bufalin also attenuates the self-renewal of cancer 
stem cells [44]. Furthermore, bufalin reduced the expression of other 
stemness markers, such as ALDH1, TERT, NANOG, Notch and Bim1 in 
isolated CSC of osteosarcoma primary cultures. Bufalin-treated CSC 
conferred a lower ability of xenograft formation in mice [142]. In an in 
vivo pancreatic cancer model, bufalin inhibited tumour growth and 
prolonged the duration for tumour formation (subcutaneous xenograft), 
and pre-treatment with bufalin decreased intestinal and lung metastases 
after IV tail vein administration [150]. In colorectal cancer, both in in 
vitro and in vivo models, bufalin abrogated cisplatin induced stemness 
(associated with increased expression of stemness markers such as 
CD133, CD44, NANOG, OCT4, SOX2, and ABCG2) [126]. 

14. Bufalin modulates migration and invasion of cancer cells 

Bufalin regulates the expression of some common markers involved 
in epithelial-mesenchymal transition (EMT) in different cancer types 
(Table 8). In hepatocellular and bladder carcinomas, this was associated 
with the decrease of the transcription factor ZEB1 [78], the increase of 
mRNA and protein levels of the tissue inhibitor of metalloproteinase 
(TIMP) 1 and 2 [95] and the decrease in Gli1 and Gli3 proteins within 
the Hedgehog (Hh) signaling pathway [99]. While in gastric cancer, 
bufalin-induced inhibition of migration and invasion was associated 

Table 7 
Phenotype and stemness associated markers affected by bufalin.  

Decrease  

Spheroid 
formation 

TNBC [25], gallbladder cancer [44], osteosarcoma [142,151], 
glioma [141], pancreatic cancer [150] and colorectal cancer  
[126] 

SOX2 TNBC [25], gallbladder cancer [44], osteosarcoma [142,151], 
glioma [141] and colorectal cancer [126] 

OCT4 TNBC [25], gallbladder cancer [44], osteosarcoma [142,151], 
glioma [141] and colorectal cancer [126] 

CD133 Gallbladder cancer [44], colorectal cancer [122,126] and 
osteosarcoma [142,151] 

CD44 Gallbladder cancer [44] and colorectal cancer [126]  
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with the inhibition of ASCL2 expression. Indeed, ASCL2 RNAi mimicked 
bufalin effects on MMPs, E-cadherin and vimentin [152]. In hepatocel-
lular carcinoma, bufalin moderates the phosphorylation of GSK3-β, 
which plays a key role in tumour invasion, while the total amount of 
GSK3-β protein was increased [90,91]. 

Other more specific mechanisms are also described. In hepatocellular 
carcinoma, bufalin binds syndecan-4 (SDC4) which is a major endoge-
nous membrane receptor regulating cell cytoskeleton, adhesion, and 
migration (Fig. 2). Consequently, SDC-4 interaction with its protein 
substrate DDX23 (Dead-box helicase 12) is increased contributing to 
genomic instability. A DARTS (Drug Affinity Responsive Target Stabil-
ity) experiment also indicated that bufalin could stabilize SDC4 leading 
to an enhanced susceptibility to proteolysis. SDC4-DDX23 KO opposes 
bufalin inhibition of cell migration [78]. In gastric cancer, bufalin sup-
pressed peritoneal dissemination by reducing the phosphorylation of 
NOS3 [111]. In bladder carcinoma, bufalin inhibits motility and inva-
siveness by acting on tight junctions (TJs) [95]. In hepatocellular car-
cinoma and lung cancer, bufalin opposes TGF‑β-induced EMT [153,154] 
and TGF‑β‑induced Twist2, zinc finger E‑box binding homeobox 2 
(ZEB2) as well as the phosphorylation of Smad2 and Smad3 whereas 
both TGF‑β receptor I (TβRI) and TGF‑β receptor II (TβRII) were 
downregulated [154]. In lung cancer, bufalin causes fibronectin over-
expression that, in its turn, reinforces bufalin antimigratory activity 
[155]. In hepatocellular carcinoma, bufalin reduces APOBEC3F which is 
overexpressed in tumour tissue having roles in cell growth and cell cycle 
control [156]. Finally, in lung cancer, bufalin downregulates 
metastasis-related genes, including the small GTPases RhoA, the 
Rho-associated kinases ROCK1, and the focal adhesion kinase (FAK) 
[108]. 

15. Bufalin impairs neo-angiogenesis 

Many studies report that bufalin downregulates HIF-1α notably in 
colorectal cancer [81], renal cell carcinoma [86] and ovarian carcinoma 
[93]. In hepatocellular carcinoma hypoxia-induced HIF-1α by CoCl2 
could be abrogated by bufalin [153] and moderates VEGF expression 
both in vitro and in vivo in tumour xenografts in mice [99,153]. In 
colorectal cancer, bufalin suppressed tumour 
microenvironment-mediated angiogenesis by inhibiting the STAT3 sig-
nalling pathway in vascular endothelial cells (HUVEC) [157]. In hepa-
tocellular carcinoma, assays on chick chorioallantoic membrane and rat 
aortic rings demonstrated that bufalin enhanced anti-angiogenic effect 
of sorafenib via modulating the AKT/VEGF signaling pathway [78,158]. 
Moreover, bufalin decreased HUVEC proliferation and migration. 
Accordingly, as vascular endothelial cells liberate various cytokines to 
affect angiogenesis, conditioned medium (CM) from bufalin-treated 
HUVEC significantly inhibited both HUVEC migration and blood 
vessel formation [78,158]. 

16. Bufalin modulates immune response 

To date, many studies focused on the effect of bufalin on tumour cells 
and many things are known regarding its cytotoxic activities. However, 
there are not many studies focusing on the impact of bufalin on the 
immune system in a context of cancer while a recent study published in 
May 2022 in the Journal for Immunotherapy of Cancer reported a 
stronger effect of bufalin on decreasing tumour volume and growth rate 
in immunocompetent C57BL/l mice compared to immunodeficient nude 
mice. Moreover, in this context, the depletion of T cells with anti-CD4 
and anti-CD8 neutralizing antibody or the macrophage deprivation 
decreased the anti-tumour activity of bufalin in hepatocellular carci-
noma (HCC) xenograft models indicating a predominant role of the 
immune system in bufalin anti-cancer properties [159]. We report in this 
section the data on the implication of bufalin on macrophages, lym-
phocytes, and inflammation. 

16.1. Macrophages 

Bufalin promotes macrophage phagocytosis. Indeed, blood samples 
from mice treated with bufalin revealed that bufalin treatment led to 
increased phagocytosis by macrophages isolated from peripheral blood 
mononuclear cells or from the peritoneal cavity [160]. In colorectal 
cancer, the anti-inflammatory/pro-tumoral macrophages M2 play a key 
role in oxaliplatin chemoresistance. Bufalin reverses this chemo-
resistance by moderating M2 macrophages polarization through inhi-
bition of SCR-3 and its target MIF that is crucial for M2 polarization 
[104]. In HCC xenograft immunocompetent mice, bufalin increased the 
recruitment of macrophages to the tumour site and induced their po-
larization toward an anti-tumour M1 phenotype. This M2 to M1 repo-
larization is linked to the activation of the NF-κB pathway by bufalin. Ex 
vivo, HCC cells co-cultured with Bone Marrow-Derived Macrophages 
(BMDMs) differentiated such macrophages into M2 phenotype, while 
bufalin abrogated this mechanism and increased the M1/M2 ratio. The 
IL-12/IL-10 ratio was also increased by bufalin (from 0.3 to 7) indicating 
an increased M1 polarization. Finally, the delivery of these 
bufalin-primed BMDMs to mice suppressed HCC development [159]. 

16.2. Lymphocytes 

In hepatocellular carcinoma, bufalin exerts its immunomodulatory 
effects by modifying the balance between stimulatory and inhibitory 
receptors on the surface of natural killer (NK) cells. Moreover, bufalin 
promotes MICA expression on the cell membrane and decreases its 
secretion, which contributes to the induction of cytolytic activity of the 
NK cells. In hepatocellular carcinoma, low MICA expression in tumours 
is associated with a poor survival [161]. In leukaemia mouse models, 
bufalin stimulates NK cell cytotoxic activity as well as B-cell and T-cell 
proliferation [160]. A study in HCC indicated that bufalin did not 
directly induce T cell immune response. Indeed, splenic CD4+ and CD8+

T cells did not proliferate faster in the presence of bufalin. However, in 
bufalin treated mice, M1 polarization by bufalin promoted the migration 
and accumulation of T cells in the tumour. Ex vivo, the treatment of 
BMDMs by bufalin increases IL-12 and TNF-α and decreased IL-10 and 
TGF-β and these changes were responsible for T cell proliferation and 
activation. Moreover, the co-culture of bufalin treated-BMDMs and 
CD8+ T cells enhanced their killing activity. The delivery of 
BMDM-primed with bufalin to HCC xenografts mice upregulated the 
presence T cells in the tumour and provoke their cytotoxic activity 
[159]. 

Regarding its impact on immunotherapy, this study on HCC, which is 
usually not a good candidate for immunotherapy due to its strong 
immunosuppressive tumour microenvironment, reported that bufalin 
could increase the efficacy of anti-PD1 antibody in vivo by modifying 
the microenvironment [159]. 

16.3. Inflammation 

In in vivo colorectal cancer models, bufalin inhibited NF-kB and GSK- 
3β pathways resulting in suppression of the expression of pro- 
inflammatory mediators COX-2, TNFα, IL-1β, IL-6, CXCL1–2–5 [28]. 
Similarly, in a murine model of bone cancer, an anti-inflammatory effect 
of bufalin was associated with a decrease in cancer-induced bone pain 
and destruction [162]. Another study confirmed that bufalin exerted its 
anti-inflammatory and analgesic effects by downregulating iNOS, 
COX-2, IL-1β, IL-6, and TNFα [163]. 

17. Toxicity of bufalin on healthy tissues and in vivo models 

Bufalin showed no significant toxicity in leucocytes and lymphocytes 
obtained from healthy donors [58,164] and no apoptosis induction even 
at 1 µM of bufalin in polymorphonuclear cells [165]. Other studies also 
showed no damages to normal ovarian and endometrial tissues and cells 
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whereas 0.2 µM bufalin eliminated almost all tumour cells sparing 
healthy cells [89,93,132]. It was also the case with immortalized he-
patocytes where up to 1 µM concentration almost eliminated all cancer 
cells while merely reducing healthy cells by only 20 % [83]. Bufalin also 
exerts marginal effect on normal gastric mucous epithelium cell line up 
to 200 nmol/l [60] as well as on human mesangial and breast epithelial 
cell lines [34]. Finally, bufalin exhibits lower toxicity towards human 
oesophageal squamous cells compared to cancer cells, supporting its 
high selectivity [166]. 

Moreover, the effect of bufalin has been assessed in vivo in many 
cancer animal models with promising results reporting inhibition of 
tumour development and metastases (Table 9). None of these studies 
(Table 9), reported changes in animal weight or specific acute or delayed 
toxicities. Moreover, a study indicated no morphological changes in the 
myocardium, brain, liver and kidney tissues [167]. 

18. Bufalin pharmacokinetics and bioavailability 

One of the major concerns for the implementation of bufalin in the 
clinic is linked to its poor pharmacological properties. Indeed, like other 
steroids, bufalin harbours a poor water solubility linked to its 

hydrophobic chemical structure. Moreover, as other cardiotonic ste-
roids, it has a narrow therapeutic window linked to the modification in 
sodium and potassium balances when it affects the Na+/K+-ATPase 
pump which is ubiquitously expressed in human cells and is crucial for 
the proper functioning of the heart and the cardiovascular system [169, 
170]. 

Some studies also reported a fast distribution in rat and mice (half- 
life of 0.0693 min in blood after i.v. injected) [80,171]. Bufalin clear-
ance occurs through the hepatic (by CYP3A4 [172–174]) and renal 
routes with a half-life of 510 min [171]. 

As bufalin has a poor water solubility and is rapidly distributed and 
metabolized, many formulation studies are now focusing on developing 
tools to improve bufalin bioavailability by increasing its water solubility 
and tumour uptake while decreasing its cardiac toxicity (Table 10). In 
this context, tumor-vectorized bufalin-grafted magnetic iron oxide 
nanoparticles could constitute an interesting theranostic strategy 
combining improved tumour uptake of unmetabolized bufalin and 
possibility of magnetic resonance imaging [175]. 

Table 9 
Bufalin anti-cancer effect in animal models.  

Ovarian carcinoma  • Xenograft, decreased tumour size [93]  
• Xenograft, PET-CT indicated suppressed glucose 

uptake [119] 
Pancreatic cancer  • Xenograft, decreased tumour size, large areas of 

necrosis and inflammatory exudation and increased 
number of apoptotic cells [26]  

• Xenograft, increased antitumor effect of 
gemcitabine [105]  

• Xenograft of gemcitabine resistant cells, decreased 
tumour growth and prolonged duration for tumour 
formation [150]  

• Injection in tail vein, fewer intestine and lung 
metastasis [150] 

Hepatocellular carcinoma  • Inhibited HBV-induced tumour development [127]  
• Orthotopic, decreased tumour volume and 

increased necrotic areas [167]  
• Orthotopic, decreased primary tumour size, 

increased necrotic areas and number of apoptotic 
cells and decreased lung metastasis number and size 
[90]  

• Orthotopic and injection in tail vein, fewer 
metastatic lesions in lung and liver and fewer mice 
detected with metastasis [153]  

• Xenograft, attenuated tumour formation and 
progression [83]  

• Orthotopic, decreased tumour size and volume [83] 
Gallbladder carcinoma  • Xenograft, decreased tumour volume [44] 
Colorectal cancer  • Xenograft, increased antitumor effect of DOX [122]  

• Orthotopic, decreased tumour growth and 
prolonged survival [40]  

• Xenograft, increased effect of cisplatin by reduction 
of cisplatin-induced stemness markers [126]  

• Xenograft, decreased tumorigenesis and increased 
apoptosis [28] 

Leukaemia  • Decreased tumorigenesis by enhancing immune 
responses [160] 

Oesophageal squamous cell 
carcinoma  

• Orthotopic, decreased tumour size [46] 

Prostate cancer  • Xenograft, decreased tumour growth [47] 
Lung cancer  • Xenograft, decreased tumour growth [35]  

• Xenograft, EGFR mutated, decreased tumour size 
[168] 

Glioblastoma  • Xenograft, suppressed tumour growth [116] 
Osteosarcoma  • Xenograft, inhibited MTX-resistant tumour growth 

[42] 
Cervical cancer  • Xenograft, decreased tumour growth and increased 

paclitaxel activity [132] 
Breast cancer  • Xenograft, decreased tumour growth [37] 
Gastric cancer  • Xenograft, decreased tumour growth and metastasis 

[152]  

Table 10 
Strategies to improve bufalin bioavailability.  

Formulation Aim 

Albumin sub-microspheres loaded with 
bufalin 

Decreased toxicity [176] 

Targeting immunomicelles loaded with 
bufalin 

Slow drug release [177] 

Immunoliposomes for bufalin and anti- 
CD40 antibody co-delivery 

Improved biodistribution to the tumour 
and increased antitumor activity [178] 

Bufalin-loaded modified abumin- 
polymer 

Efficient tumour-targeted delivery and 
side effect reduction [179,180] 

Acetyl-bufalin Prodrug increasing half-life of 
elimination [80] 

Bufalin-loaded PEGylated liposomes Improved solubility, increased time in 
blood stream and increased half-life  
[181] 

Bufalin-loaded CaP/DPPE-PEG-EGF 
nanospheres 

Improved antitumor effect in vivo in 
colon cancer and increased release-time  
[182] 

Bufalin-loaded MPEG-PLGA-PLL-CRGD 
nanoparticles 

Prolonged and sustained release of 
bufalin, able to target the tumour in 
vivo, increased anticancer effect on 
colorectal cancer in vivo [183] 

Bufalin loaded biotinylated chitosan 
nanoparticles 

Slower bufalin release, increased 
antitumor effect on breast cancer in vivo 
[184] 

Bufalin-loaded pluronic polyetherimide 
nanoparticles 

Decreased toxicity linked to controlled 
release and increased antitumor effect 
on colon cancer in vivo [185] 

PEG-based polymeric prodrug of bufalin Improved water solubility and stability  
[186] 

Octreotide-modified esterase-sensitive 
tumour-targeting polymeric prodrug of 
bufalin 

Increased cytotoxicity, cellular uptake 
and apoptotic induction in vitro and 
improved tumour accumulation in 
breast cancer in vivo [187] 

Folate receptor targeted bufalin/ 
β-cyclodextrin supramolecular 
inclusion complex 

Increased water solubility and increased 
antitumor efficiency [188] 

BU-loaded VES-CSO/TPGS-RGD mixed 
micelles 

Improved stability, sustained release 
pattern, higher intracellular uptake, and 
greater cytotoxicity in vitro and reduced 
side effects in vivo 

Platelet-membrane-biomimetic 
nanoparticles 

Increased tumour accumulation leading 
to more effective tumour growth 
inhibition [189] 

Folic acid-modified MOFs (metal-organic 
frameworks) 

Improved water solubility, stability and 
intracellular uptake in vitro and 
improved tumour accumulation and 
reduced side effects in vivo [190] 

BF211, a bufalin derivative Greater apoptotic induction and lower 
acute toxicity in multiple myeloma [77] 
and lung cancer [191] 

3-phospho-bufalin, prodrug Increased water solubility [100]  
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19. Discussion and perspectives 

Firstly, we will focus on the advantages of bufalin as a potential 
future cancer treatment. 

All the data discussed in the current review indicated that bufalin 
could act on many hallmarks of cancer which could make it a candidate 
of choice for the treatment of such diseases. Indeed, actual treatment, 
such as targeted therapy mainly focus on only one specific oncogenic 
mechanism which is the main cause of resistance development. As 
bufalin target many oncogenic pathways, the development of resistance 
should be delayed or blocked, making combination more effective. 
Among the mechanisms of action of bufalin, one even more interesting is 
its ability to reverse stemness which is often associated with resistance 
and metastasis development. 

Its main target is the α-subunit ATP1A1 of the sodium pump which is 
overexpressed in many cancers. By acting on ATP1A1, bufalin induced 
the inactivation of the SRC protein kinase and of many downstream 
signalling pathways, inhibiting cell survival. Another important target 
of bufalin is the co-activator SRC-3 of transcription factors. Indeed, by 
inhibiting SRC-3, bufalin is able to affect the transcription of many 
genes, including genes coding for specific proteins involved in the 
translation complex toward cancer-associated proteins (Fig. 2). Hence, 
targeting ATP1A1 and SRC-3, bufalin can impact signalling pathways, 
gene transcription and translation, all important regulatory processes in 
cancer. 

On the other hand, bufalin is a cardiotonic steroid, as digoxine which 
has also demonstrated interesting anti-tumour properties [192]. More-
over, epidemiological studies have highlighted lower risks of developing 
leukemia and renal tumours as well as lower risks of breast cancer 
recurrence in patient treated with cardiotonic steroids for other heart 
disorders [102]. But the major problem with these molecules is their 
potential cardiac toxicity and, as a result, their small therapeutic win-
dows. This problem could be less pronounced for bufalin use since it is 
already endogenously present in serum of healthy people [12]. Of note, 
bufalin is detected at a relatively low level (5.7 nM) in healthy humans 

but this level could be sufficient to fight cancer development as the 
concentrations used in the literature to decrease tumour development in 
vitro and in vivo range from 1 to 10 nM. Moreover, bufalin levels are 
significantly decreased in cancer patients [12]. This major observation 
shed a completely new perspective suggesting that restoring normal 
bufalin levels in cancer patients could limit and delay tumour spread. 

Then, we will emphasis on the major disadvantage of bufalin and 
how we could work to improve its use in clinics. 

The major drawbacks of bufalin are its potential cardiotoxicity as 
well as its low solubility and its fast distribution and metabolization 
observed in in vivo studies. There are a few reasons to hope that bufalin 
used at low doses should not induce cardiotoxicity as in vivo studies did 
not observed any morphological changes in the myocardium of mice or 
rats treated with this compound. Moreover, as explained above, bufalin 
is endogenously expressed in humans; so if used at physiological doses, it 
should not induce toxicity. To counteract its low bioavailability, it is 
crucial to better understand how bufalin is synthesized in the human 
body and how it is stored, and to try to stimulate its endogenous pro-
duction. On the other hand, the I.V. administration of bufalin-coupled 
nanoparticles could be an effective alternative strategy to improve 
bioavailability of the molecule for cancers. 

Regarding the possibility of cancer treatment with bufalin and 
knowing the current necessity of treatment combinations, it is difficult 
to imagine a treatment relying only on bufalin today. Nevertheless, 
bufalin could be used at small doses to improve the efficacy of other 
conventional chemotherapy or targeted treatments as it already showed 
synergy with many drugs in different cancer types. In addition, in the 
context of the development of immunotherapy, bufalin could be a very 
interesting molecule to switch the immunosuppressive tumour micro-
environment into a more immunocompetent one and to improve the 
response to immunotherapeutic strategies. 

20. Conclusions 

In the past few years, bufalin has been largely studied in the context 

Fig. 3. Hallmarks of bufalin against cancer (need to be printed in colours).  
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of oncology in many cancer types for its major regulatory role in various 
tumorigenic pathways. Taken together, all data discussed within the 
present review support that bufalin exerts its antitumor effect by acting 
on all the hallmarks of cancer (Fig. 3). Indeed, bufalin acts on tumour 
growth by inducing cell death, blocking cell cycle, stimulating senes-
cence, or inhibiting proliferative signaling and protein translation. It 
also moderates metastatic spread by inhibiting cell migration and in-
vasion as well as by blocking angiogenesis. Bufalin also modifies other 
aspects of cancer cells such as their metabolism, phenotype, or level of 
oxidative stress. Finally, bufalin could improve the effect of current anti- 
cancer therapies by overcoming resistance or/and stimulating immune 
response. Despite that bufalin could be seen as a molecule of choice to 
improve cancer treatment, the major problem is linked to a narrow 
therapeutic window because of a possible cardiotoxicity, that can, 
however, be easily bypassed by using prodrugs, drug formulations to 
improve tumour delivery or/and repeated low dose administration. 
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